Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 8(1): 17635, 2018 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-30518777

RESUMO

Inconsistent hypotheses have proposed Ca2+ as either being essential or irrelevant and redundant in ABA induced stomatal closure. This study integrates all available information from literature to define ABA signalling pathway and presents it in a systems view for clearer understanding of the role of Ca2+ in stomatal closure. Importantly, it incorporates into an Asynchronous Boolean model time delays sourced from an extensive literature search. The model predicted the timing of ABA events and mutant behaviour close to biology. It revealed biologically reported timing for Ca2+ activation and Ca2+ dynamics consistent with biology. It also predicts that Ca2+ elevation is not essential in stomatal closure but it can accelerate closure, consistent with previous findings, but our model further explains that acting as a mediator, Ca2+ accelerates stomatal closure by enhancing plasma membrane slowly activating anion channel SLAC1 and actin rearrangement. It shows statistical significance of Ca2+ induced acceleration of closure and that of Ca2+ induced acceleration of SLAC1 activation. Further, the model demonstrates that Ca2+ enhances resilience of closure to perturbation of important elements; especially, ROS pathway, as did previous ABA model, and even to the ABA signal disruption. It goes further to elucidate the mechanisms by which Ca2+ engenders stomatal closure in these perturbations.

2.
PLoS One ; 13(2): e0193119, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29447287

RESUMO

Bacillus amyloliquefaciens QST713 and B. firmus I-1582 are bacterial strains which are used as active ingredients of commercially-available soil application and seed treatment products Serenade® and VOTiVO®, respectively. These bacteria colonize plant roots promoting plant growth and offering protection against pathogens/pests. The objective of this study was to develop a qPCR protocol to quantitate the dynamics of root colonization by these two strains under field conditions. Primers and TaqMan® probes were designed based on genome comparisons of the two strains with publicly-available and unpublished bacterial genomes of the same species. An optimized qPCR protocol was developed to quantify bacterial colonization of corn roots after seed treatment. Treated corn seeds were planted in non-sterile soil in the greenhouse and grown for 28 days. Specific detection of bacteria was quantified weekly, and showed stable colonization between ~104-105 CFU/g during the experimental period for both bacteria, and the protocol detected as low as 103 CFU/g bacteria on roots. In a separate experiment, streptomycin-resistant QST713 and rifampicin-resistant I-1582 strains were used to compare dilution-plating on TSA with the newly developed qPCR method. Results also indicated that the presence of natural microflora and another inoculated strain does not affect root colonization of either one of these strains. The same qPCR protocol was used to quantitate root colonization by QST713 and I-1582 in two corn and two soybean varieties grown in the field. Both bacteria were quantitated up to two weeks after seeds were planted in the field and there were no significant differences in root colonization in either bacteria strain among varieties. Results presented here confirm that the developed qPCR protocol can be successfully used to understand dynamics of root colonization by these bacteria in plants growing in growth chamber, greenhouse and the field.


Assuntos
Bacillus amyloliquefaciens , Bacillus firmus , Desenvolvimento Vegetal/fisiologia , Raízes de Plantas/microbiologia , Solo , Zea mays/microbiologia , Raízes de Plantas/crescimento & desenvolvimento , Sementes/crescimento & desenvolvimento , Sementes/microbiologia , Zea mays/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...